Synthetic aperture radar (SAR) images are affected by a spatially-correlated and signal-dependent noise called speckle, which is very severe and may hinder image exploitation. Despeckling is an important task that aims at removing such noise, so as to improve the accuracy of all downstream image processing tasks. The first despeckling methods date back to the 1970's, and several model-based algorithms have been developed in the subsequent years. The field has received growing attention, sparkled by the availability of powerful deep learning models that have yielded excellent performance for inverse problems in image processing. This paper surveys the literature on deep learning methods applied to SAR despeckling, covering both the supervised and the more recent self-supervised approaches. We provide a critical analysis of existing methods with the objective to recognize the most promising research lines, to identify the factors that have limited the success of deep models, and to propose ways forward in an attempt to fully exploit the potential of deep learning for SAR despeckling.

0
下载
关闭预览

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

Image-to-image translation (I2I) aims to transfer images from a source domain to a target domain while preserving the content representations. I2I has drawn increasing attention and made tremendous progress in recent years because of its wide range of applications in many computer vision and image processing problems, such as image synthesis, segmentation, style transfer, restoration, and pose estimation. In this paper, we provide an overview of the I2I works developed in recent years. We will analyze the key techniques of the existing I2I works and clarify the main progress the community has made. Additionally, we will elaborate on the effect of I2I on the research and industry community and point out remaining challenges in related fields.

0
12
下载
预览

Deep learning techniques have received much attention in the area of image denoising. However, there are substantial differences in the various types of deep learning methods dealing with image denoising. Specifically, discriminative learning based on deep learning can ably address the issue of Gaussian noise. Optimization models based on deep learning are effective in estimating the real noise. However, there has thus far been little related research to summarize the different deep learning techniques for image denoising. In this paper, we offer a comparative study of deep techniques in image denoising. We first classify the deep convolutional neural networks (CNNs) for additive white noisy images; the deep CNNs for real noisy images; the deep CNNs for blind denoising and the deep CNNs for hybrid noisy images, which represents the combination of noisy, blurred and low-resolution images. Then, we analyze the motivations and principles of the different types of deep learning methods. Next, we compare the state-of-the-art methods on public denoising datasets in terms of quantitative and qualitative analysis. Finally, we point out some potential challenges and directions of future research.

0
10
下载
预览

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

0
11
下载
预览

The rapid advancements in machine learning, graphics processing technologies and availability of medical imaging data has led to a rapid increase in use of machine learning models in the medical domain. This was exacerbated by the rapid advancements in convolutional neural network (CNN) based architectures, which were adopted by the medical imaging community to assist clinicians in disease diagnosis. Since the grand success of AlexNet in 2012, CNNs have been increasingly used in medical image analysis to improve the efficiency of human clinicians. In recent years, three-dimensional (3D) CNNs have been employed for analysis of medical images. In this paper, we trace the history of how the 3D CNN was developed from its machine learning roots, brief mathematical description of 3D CNN and the preprocessing steps required for medical images before feeding them to 3D CNNs. We review the significant research in the field of 3D medical imaging analysis using 3D CNNs (and its variants) in different medical areas such as classification, segmentation, detection, and localization. We conclude by discussing the challenges associated with the use of 3D CNNs in the medical imaging domain (and the use of deep learning models, in general) and possible future trends in the field.

0
8
下载
预览

Reinforcement learning (RL) is a popular paradigm for addressing sequential decision tasks in which the agent has only limited environmental feedback. Despite many advances over the past three decades, learning in many domains still requires a large amount of interaction with the environment, which can be prohibitively expensive in realistic scenarios. To address this problem, transfer learning has been applied to reinforcement learning such that experience gained in one task can be leveraged when starting to learn the next, harder task. More recently, several lines of research have explored how tasks, or data samples themselves, can be sequenced into a curriculum for the purpose of learning a problem that may otherwise be too difficult to learn from scratch. In this article, we present a framework for curriculum learning (CL) in reinforcement learning, and use it to survey and classify existing CL methods in terms of their assumptions, capabilities, and goals. Finally, we use our framework to find open problems and suggest directions for future RL curriculum learning research.

0
11
下载
预览

Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.

0
28
下载
预览

Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.

0
8
下载
预览

Since the proposal of big data analysis and Graphic Processing Unit (GPU), the deep learning technology has received a great deal of attention and has been widely applied in the field of imaging processing. In this paper, we have an aim to completely review and summarize the deep learning technologies for image denoising proposed in recent years. Morever, we systematically analyze the conventional machine learning methods for image denoising. Finally, we point out some research directions for the deep learning technologies in image denoising.

0
3
下载
预览

Deep Learning has enabled remarkable progress over the last years on a variety of tasks, such as image recognition, speech recognition, and machine translation. One crucial aspect for this progress are novel neural architectures. Currently employed architectures have mostly been developed manually by human experts, which is a time-consuming and error-prone process. Because of this, there is growing interest in automated neural architecture search methods. We provide an overview of existing work in this field of research and categorize them according to three dimensions: search space, search strategy, and performance estimation strategy.

0
10
下载
预览

Deep learning methods employ multiple processing layers to learn hierarchical representations of data, and have produced state-of-the-art results in many domains. Recently, a variety of model designs and methods have blossomed in the context of natural language processing (NLP). In this paper, we review significant deep learning related models and methods that have been employed for numerous NLP tasks and provide a walk-through of their evolution. We also summarize, compare and contrast the various models and put forward a detailed understanding of the past, present and future of deep learning in NLP.

0
7
下载
预览
小贴士
相关论文
Yingxue Pang,Jianxin Lin,Tao Qin,Zhibo Chen
12+阅读 · 1月21日
Chunwei Tian,Lunke Fei,Wenxian Zheng,Yong Xu,Wangmeng Zuo,Chia-Wen Lin
10+阅读 · 2020年8月3日
Zobeir Raisi,Mohamed A. Naiel,Paul Fieguth,Steven Wardell,John Zelek
11+阅读 · 2020年6月8日
3D Deep Learning on Medical Images: A Review
Satya P. Singh,Lipo Wang,Sukrit Gupta,Haveesh Goli,Parasuraman Padmanabhan,Balázs Gulyás
8+阅读 · 2020年4月1日
Curriculum Learning for Reinforcement Learning Domains: A Framework and Survey
Sanmit Narvekar,Bei Peng,Matteo Leonetti,Jivko Sinapov,Matthew E. Taylor,Peter Stone
11+阅读 · 2020年3月10日
Image Segmentation Using Deep Learning: A Survey
Shervin Minaee,Yuri Boykov,Fatih Porikli,Antonio Plaza,Nasser Kehtarnavaz,Demetri Terzopoulos
28+阅读 · 2020年1月15日
H. Ismail Fawaz,G. Forestier,J. Weber,L. Idoumghar,P. Muller
8+阅读 · 2019年3月14日
Chunwei Tian,Yong Xu,Lunke Fei,Ke Yan
3+阅读 · 2018年10月11日
Thomas Elsken,Jan Hendrik Metzen,Frank Hutter
10+阅读 · 2018年9月5日
Tom Young,Devamanyu Hazarika,Soujanya Poria,Erik Cambria
7+阅读 · 2018年2月20日
相关VIP内容
专知会员服务
71+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
41+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
22+阅读 · 2019年10月17日
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
15+阅读 · 2018年5月25日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
16+阅读 · 2017年11月5日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
12+阅读 · 2017年10月1日
【推荐】深度学习目标检测全面综述
机器学习研究会
17+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
9+阅读 · 2017年9月1日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top