The use of time series for sequential online prediction (SOP) has long been a research topic, but achieving robust and computationally efficient SOP with non-stationary time series remains a challenge. This paper reviews a framework, called Bayesian Dynamic Ensemble of Multiple Models (BDEMM), which addresses SOP in a theoretically elegant way, and have found widespread use in various fields. BDEMM utilizes a model pool of weighted candidate models, adapted online using Bayesian formalism to capture possible temporal evolutions of the data. This review comprehensively describes BDEMM from five perspectives: its theoretical foundations, algorithms, practical applications, connections to other research, and strengths, limitations, and potential future directions.
翻译:使用时间序列进行序列在线预测(SOP)已经成为研究课题,但是在非平稳时间序列中实现鲁棒和计算效率高的SOP仍然是一个挑战。本文综述了一个名为贝叶斯动态多模型集成(BDEMM)的框架,它以理论上的优雅方式解决了SOP问题,并在各个领域得到广泛应用。BDEMM利用加权候选模型的模型池,在线适应贝叶斯形式,捕获数据可能的时间演化。本综述从五个角度全面描述了BDEMM:其理论基础,算法,实践应用,与其他研究的联系,以及其优点,局限性和未来潜在方向。