To scale neural speech synthesis to various real-world languages, we present a multilingual end-to-end framework that maps byte inputs to spectrograms, thus allowing arbitrary input scripts. Besides strong results on 40+ languages, the framework demonstrates capabilities to adapt to new languages under extreme low-resource and even few-shot scenarios of merely 40s transcribed recording, without the need of per-language resources like lexicon, extra corpus, auxiliary models, or linguistic expertise, thus ensuring scalability. While it retains satisfactory intelligibility and naturalness matching rich-resource models. Exhaustive comparative and ablation studies are performed to reveal the potential of the framework for low-resource languages. Furthermore, we propose a novel method to extract language-specific sub-networks in a multilingual model for a better understanding of its mechanism.


翻译:为了将神经语言合成规模扩大到各种现实世界语言,我们提出了一个多语种端对端框架,用于绘制光谱的字面输入,从而允许任意输入文字。除了40+语言的强力成果外,该框架还展示了适应极端低资源、甚至短视的仅40秒录音记录情景下的新语言的能力,而不需要词汇、外体、辅助模型或语言专门知识等各种语言资源,从而确保可扩展性。虽然它保留了与丰富资源模型相匹配的令人满意的智能和自然性。进行了全面比较和对比研究,以揭示低资源语言框架的潜力。此外,我们提出了一种新颖的方法,在多语言模型中提取特定语言的子网络,以更好地了解其机制。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《生成式对抗网络》简介,25页ppt
专知会员服务
174+阅读 · 2020年6月28日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文 | 中文词向量论文综述(一)
黑龙江大学自然语言处理实验室
7+阅读 · 2018年8月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
14+阅读 · 2021年6月30日
Arxiv
5+阅读 · 2019年11月22日
Neural Speech Synthesis with Transformer Network
Arxiv
5+阅读 · 2019年1月30日
Dynamic Transfer Learning for Named Entity Recognition
Arxiv
3+阅读 · 2018年12月13日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
元学习(Meta Learning)最全论文、视频、书籍资源整理
深度学习与NLP
22+阅读 · 2019年6月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文 | 中文词向量论文综述(一)
黑龙江大学自然语言处理实验室
7+阅读 · 2018年8月13日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员