Age prediction based on Magnetic Resonance Imaging (MRI) data of the brain is a biomarker to quantify the progress of brain diseases and aging. Current approaches rely on preparing the data with multiple preprocessing steps, such as registering voxels to a standardized brain atlas, which yields a significant computational overhead, hampers widespread usage and results in the predicted brain-age to be sensitive to preprocessing parameters. Here we describe a 3D Convolutional Neural Network (CNN) based on the ResNet architecture being trained on raw, non-registered T 1 -weighted MRI data of N=10,691 samples from the German National Cohort and additionally applied and validated in N=2,173 samples from three independent studies using transfer learning. For comparison, state-of-the-art models using preprocessed neuroimaging data are trained and validated on the same samples. The 3D CNN using raw neuroimaging data predicts age with a mean average deviation of 2.84 years, outperforming the state-of-the-art brain-age models using preprocessed data. Since our approach is invariant to preprocessing software and parameter choices, it enables faster, more robust and more accurate brain-age modeling.
翻译:根据大脑磁共振成像(MRI)数据对大脑进行年龄期预测,是量化脑疾病和老龄化进展的生物标志。目前的方法依靠以多种预处理步骤编制数据,如将氧化物登记到标准化的大脑地图册,从而产生重要的计算间接费用,妨碍广泛使用,预测大脑年龄的结果对预处理参数敏感。这里我们描述一个基于ResNet结构的3D 革命神经网络(CNN),正在对德国国家coort的10 691样本N=10 691进行原始、未登记的T1加权MRI数据培训,并在N=2中进一步应用和验证。为比较起见,使用预先处理的神经成像数据的最新模型在同一个样本上进行培训和验证。3DCNN使用原始神经成像数据预测的年代,平均偏差为2.84年,超过使用预处理数据的先进大脑模型。由于我们的方法是更精确的,因此能够更准确地进行前处理软件和参数选择。