How difficult is it for an early career academic to climb the ranks of their discipline? We tackle this question with a comprehensive bibliometric analysis of 57 disciplines, examining the publications of more than 5 million authors whose careers started between 1986 and 2008. We calibrate a simple random walk model over historical data of ranking mobility, which we use to (1) identify which strata of academic impact rankings are the most/least mobile and (2) study the temporal evolution of mobility. By focusing our analysis on cohorts of authors starting their careers in the same year, we find that ranking mobility is remarkably low for the top and bottom-ranked authors, and that this excess of stability persists throughout the entire period of our analysis. We further observe that mobility of impact rankings has increased over time, and that such rise has been accompanied by a decline of impact inequality, which is consistent with the negative correlation that we observe between such two quantities. These findings provide clarity on the opportunities of new scholars entering the academic community, with implications for academic policymaking.


翻译:一个早期学术工作者在自己的学科领域内攀升到顶峰有多难?我们通过对57个学科的全面文献计量分析,研究了超过500万名职业生涯始于1986年至2008年之间的作者的出版物。我们校准了一种简单的随机游走模型,利用历史排名移动性数据,分别识别出哪些学术影响排名阶层的移动性最强/最弱,并研究了移动性的时间演化。通过将分析的重点放在同一年开始职业生涯的作者组上,我们发现排名移动性对于排名最高和最低的作者来说明显较低,而这种过度的稳定性在分析期间一直存在。我们还观察到,随着时间的推移,影响排名的可动性增加了,而这种增长伴随着影响不平等性的下降,这与我们观察到的两种数量之间的负相关性一致。这些结果为进入学术社区的新学者提供了清晰的机会,对学术政策制定具有意义。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
123+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
学术会议 | 欢迎注册参加第11届国际知识图谱联合会议
开放知识图谱
0+阅读 · 2022年10月21日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
33+阅读 · 2022年2月15日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
123+阅读 · 2020年9月8日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
学术会议 | 欢迎注册参加第11届国际知识图谱联合会议
开放知识图谱
0+阅读 · 2022年10月21日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员