Advancements in artificial intelligence (AI) have transformed many scientific fields, with microbiology and microbiome research now experiencing significant breakthroughs through machine learning applications. This review provides a comprehensive overview of AI-driven approaches tailored for microbiology and microbiome studies, emphasizing both technical advancements and biological insights. We begin with an introduction to foundational AI techniques, including primary machine learning paradigms and various deep learning architectures, and offer guidance on choosing between traditional machine learning and sophisticated deep learning methods based on specific research goals. The primary section on application scenarios spans diverse research areas, from taxonomic profiling, functional annotation \& prediction, microbe-X interactions, microbial ecology, metabolic modeling, precision nutrition, clinical microbiology, to prevention \& therapeutics. Finally, we discuss challenges in this field and highlight some recent breakthroughs. Together, this review underscores AI's transformative role in microbiology and microbiome research, paving the way for innovative methodologies and applications that enhance our understanding of microbial life and its impact on our planet and our health.
翻译:人工智能(AI)的进步已推动众多科学领域的变革,微生物学与微生物组研究正通过机器学习应用实现重大突破。本综述全面概述了针对微生物学与微生物组研究定制的AI驱动方法,着重探讨技术进展与生物学见解。我们首先介绍基础AI技术,包括主流机器学习范式与多种深度学习架构,并根据具体研究目标提供传统机器学习与复杂深度学习方法的选择指导。核心应用场景章节涵盖广泛研究领域:从物种分类分析、功能注释与预测、微生物-X相互作用、微生物生态学、代谢建模、精准营养、临床微生物学,到疾病预防与治疗。最后,我们讨论该领域面临的挑战并重点介绍近期突破性进展。本综述共同强调了AI在微生物学与微生物组研究中的变革性作用,为创新方法与应用铺平道路,深化我们对微生物生命及其对地球与健康影响的理解。