The dissemination and reach of scientific knowledge have increased at a blistering pace. In this context, e-Print servers have played a central role by providing scientists with a rapid and open mechanism for disseminating research without waiting for the (lengthy) peer review process. While helping the scientific community in several ways, e-Print servers also provide scientific communicators and the general public with access to a wealth of knowledge without paying hefty subscription fees. This motivates us to study how e-Prints are positioned within Web community discussions. In this paper, we analyze data from two Web communities: 14 years of Reddit data and over 4 from 4chan's Politically Incorrect board. Our findings highlight the presence of e-Prints in both science-enthusiast and general-audience communities. Real-world events and distinct factors influence the e-Prints people's discussions; e.g., there was a surge of COVID-19-related research publications during the early months of the outbreak and increased references to e-Prints in online discussions. Text in e-Prints and in online discussions referencing them has a low similarity, suggesting that the latter are not exclusively talking about the findings in the former. Further, our analysis of a sample of threads highlights: 1) misinterpretation and generalization of research findings, 2) early research findings being amplified as a source for future predictions, and 3) questioning findings from a pseudoscientific e-Print. Overall, our work emphasizes the need to quickly and effectively validate non-peer-reviewed e-Prints that get substantial press/social media coverage to help mitigate wrongful interpretations of scientific outputs.


翻译:科学知识的传播和普及以迅速膨胀的速度增加,在这方面,电子印刷服务器发挥了中心作用,为科学家提供了一个快速和开放的传播研究的机制,而不必等待(长期)同侪审查过程。电子印刷服务器在以多种方式帮助科学界的同时,也为科学传播者和一般公众提供了科学传播者,在不支付高昂的订阅费的情况下,可以获取丰富的知识。这促使我们研究电子印刷商如何在网络社区讨论中定位电子印刷商。在本文中,我们快速分析两个网络社区的数据:14年的Reddit数据,4年以上的4年的Reddit数据,4年以上的4个来自4chan的不正确政治董事会。我们的调查结果突出显示电子出版商在科学-爱好者和一般观众群体中的存在。现实世界事件和不同因素影响着电子出版商的讨论;例如,在爆发的最初几个月里,与CVID-19有关的研究出版物激增,在线讨论对电子出版商的引用率增加。电子出版商在电子出版业的网上讨论中,电子出版中的电子出版和4年的4年以上的不准确解释中,在网上评论中显示电子出版结果的准确分析结果,而后一则显示我们将来的精确分析结果的深度分析是相当的低,在分析中,而后期分析显示,而后期分析结果显示,而后一则显示我们将来的精确的精确分析结果的精确分析结果,而后一则显示,在前一则显示,后一则显示,在前一则显示,在前一至二期研究的结果。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
12+阅读 · 2022年4月30日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员