We address the atomistic nature of the longitudinal static friction against sliding of graphene nanoribbons (GNRs) deposited on gold, a system whose structural and mechanical properties have been recently the subject of intense experimental investigation. By means of numerical simulations and modeling we show that the GNR interior is structurally lubric ("superlubric") so that the static friction is dominated by the front/tail regions of the GNR, where the residual uncompensated lateral forces arising from the interaction with the underneath gold surface opposes the free sliding. As a result of this edge pinning the static friction does not grow with the GNR length, but oscillates around a fairly constant mean value. These friction oscillations are explained in terms of the GNR-Au(111) lattice mismatch: at certain GNR lengths close to an integer number of the beat (or moire') length there is good force compensation and superlubric sliding; whereas close to half odd-integer periods there is significant pinning of the edge with larger friction. These results make qualitative contact with recent state-of-the-art atomic force microscopy experiment, as well as with the sliding of other different incommensurate systems.
翻译:我们解决了在金子上沉积的石墨纳米核子(GNRs)滑动过程中的纵向静态摩擦的原子性质。 这种系统的结构和机械特性最近一直是密集实验性调查的主题。 通过数字模拟和模型模型,我们表明GNR内部结构润滑(“超卢” ),静态摩擦以GNR的前尾区域/尾区域为主,与下金表面相互作用产生的未补偿的残余横向力量与自由滑动相对立。由于这种边缘固定摩擦不会随着GNR的长度而增长,而是围绕相当稳定的中值而振动。这些摩擦的振动用GNR-Au(111)拉特不匹配来解释:在GNR的一定长度接近节拍(或摩尔)的整数的长度上,有良好的力补偿和超卢布滑动;而接近半奇点的横向力量阻力则与较边缘的边缘有较大的摩擦线,但以较大的摩擦度上升。这些摩擦以GNRR-A(111)(111) ) 阵形系统与最近与不同水平的原子系统进行质量上的实验。这些结果是与其他磁变压的。