Configuration is a successful application area of Artificial Intelligence. In the majority of the cases, configuration systems focus on configuring one solution (configuration) that satisfies the preferences of a single user or a group of users. In this paper, we introduce a new configuration approach - multi-configuration - that focuses on scenarios where the outcome of a configuration process is a set of configurations. Example applications thereof are the configuration of personalized exams for individual students, the configuration of project teams, reviewer-to-paper assignment, and hotel room assignments including individualized city trips for tourist groups. For multi-configuration scenarios, we exemplify a constraint satisfaction problem representation in the context of configuring exams. The paper is concluded with a discussion of open issues for future work.
翻译:配置是人工智能的成功应用领域。 在大多数情况下, 配置系统侧重于配置一种满足单一用户或一组用户偏好的解决办法( 配置 ) 。 在本文中, 我们引入了一种新的配置方法 — — 多配置 — — 侧重于配置过程的结果是一组配置组合的情景。 其应用实例包括个体学生个性化考试配置、 项目团队配置、 纸对纸分配、 酒店房间分配, 包括旅游群体个性化城市旅行 。 对于多配置方案, 我们在配置考试中举例说明了限制满意度问题。 文件最后讨论了未来工作的开放问题 。