Wide deployment of deep neural networks (DNNs) based applications (e.g., style transfer, cartoonish), stimulating the requirement of copyright protection of such application's production. Although some traditional visible copyright techniques are available, they would introduce undesired traces and result in a poor user experience. In this paper, we propose a novel plug-and-play invisible copyright protection method based on defensive perturbation for DNN-based applications (i.e., style transfer). Rather than apply the perturbation to attack the DNNs model, we explore the potential utilization of perturbation in copyright protection. Specifically, we project the copyright information to the defensive perturbation with the designed copyright encoder, which is added to the image to be protected. Then, we extract the copyright information from the encoded copyrighted image with the devised copyright decoder. Furthermore, we use a robustness module to strengthen the decoding capability of the decoder toward images with various distortions (e.g., JPEG compression), which may be occurred when the user posts the image on social media. To ensure the image quality of encoded images and decoded copyright images, a loss function was elaborately devised. Objective and subjective experiment results demonstrate the effectiveness of the proposed method. We have also conducted physical world tests on social media (i.e., Wechat and Twitter) by posting encoded copyright images. The results show that the copyright information in the encoded image saved from social media can still be correctly extracted.
翻译:随着深度神经网络(DNN)应用程序(例如,样式转移、漫画等)的广泛部署,刺激了对这些应用程序生产版权保护的需求。尽管某些传统的可见版权技术可用,但它们会引入不必要的痕迹,导致用户体验较差。本文提出了一种新型基于防御扰动的即插即用隐形版权保护方法,用于基于DNN的应用程序(例如样式转移)。我们探索了扰动在版权保护中的潜在利用价值,而不是将其应用于攻击DNN模型。具体而言,我们使用设计的版权编码器将版权信息投影到防御性扰动上,然后将其添加到要受保护的图像中。然后,我们使用开发的版权解码器从编码的受版权保护的图像中提取版权信息。此外,我们使用一个强韧性模块,增强解码器对具有各种失真(例如JPEG压缩)的图像的解码能力,这可能发生在用户将图像发布在社交媒体上时。为确保编码图像和解码版权图像的图像质量,我们设计了一种损失函数。客观和主观实验结果证明了所提出方法的有效性。我们还通过在社交媒体(例如微信和Twitter)上发布编码受版权保护的图像进行了实际测试。结果表明,可以正确提取来自社交媒体下载版权信息的编码图像中的版权信息。