Next generation cellular networks will implement radio sensing functions alongside customary communications, thereby enabling unprecedented worldwide sensing coverage outdoors. Deep learning has revolutionised computer vision but has had limited application to radio perception tasks, in part due to lack of systematic datasets and benchmarks dedicated to the study of the performance and promise of radio sensing. To address this gap, we present MaxRay: a synthetic radio-visual dataset and benchmark that facilitate precise target localisation in radio. We further propose to learn to localise targets in radio without supervision by extracting self-coordinates from radio-visual correspondence. We use such self-supervised coordinates to train a radio localiser network. We characterise our performance against a number of state-of-the-art baselines. Our results indicate that accurate radio target localisation can be automatically learned from paired radio-visual data without labels, which is highly relevant to empirical data. This opens the door for vast data scalability and may prove key to realising the promise of robust radio sensing atop a unified perception-communication cellular infrastructure. Dataset will be hosted on IEEE DataPort.
翻译:下一代蜂窝网络将同传统通信一起实施无线电遥感功能,从而实现前所未有的世界范围的室外遥感覆盖。深层学习使计算机视野发生了革命性的变化,但对于无线电感知任务的应用有限,部分原因是缺乏系统化的数据集和用于研究无线电感测的性能和前景的基准。为了弥补这一差距,我们向MaxRay展示了MaxRay:一个合成的无线电-视听数据集和基准,便于无线电中精确的目标定位。我们进一步提议通过从无线电-视觉通信中提取自标坐标,在不受监督的情况下学习无线电目标本地化。我们使用这种自控坐标来培训无线电感知网络。我们用一些最先进的基线来描述我们的表现。我们的结果显示,可以自动从配对的无线电-视觉数据中学习准确的局部化,而没有标签,这与实验数据密切相关。这打开了庞大数据可缩放的大门,并且可能证明实现在统一的感知-感知-感知-感-细胞基础设施上进行强力无线电感测的许诺的关键。数据集将存放在IEEEDDP上。