The increasing occurrence, forms, and negative effects of misinformation on social media platforms has necessitated more misinformation detection tools. Currently, work is being done addressing COVID-19 misinformation however, there are no misinformation detection tools for any of the 40 distinct indigenous Ugandan languages. This paper addresses this gap by presenting basic language resources and a misinformation detection data set based on code-mixed Luganda-English messages sourced from the Facebook and Twitter social media platforms. Several machine learning methods are applied on the misinformation detection data set to develop classification models for detecting whether a code-mixed Luganda-English message contains misinformation or not. A 10-fold cross validation evaluation of the classification methods in an experimental misinformation detection task shows that a Discriminative Multinomial Naive Bayes (DMNB) method achieves the highest accuracy and F-measure of 78.19% and 77.90% respectively. Also, Support Vector Machine and Bagging ensemble classification models achieve comparable results. These results are promising since the machine learning models are based on n-gram features from only the misinformation detection dataset.
翻译:在社交媒体平台上,错误信息的出现、形式和负面影响日益增加,因此需要更多的错误检测工具。目前,正在着手解决COVID-19错误信息,但乌干达40种不同的土著语言中没有任何一种没有错误检测工具。本文件通过提供基本语言资源和基于Facebook和Twitter社交媒体平台提供的代码混合Luganda-English信息的错误检测数据集来解决这一差距。在错误检测数据集上应用了几种机器学习方法,以开发分类模型,用以检测编码混合的Luganda-English信息是否包含错误信息。对实验错误检测任务中的分类方法进行10倍交叉验证评估显示,偏差性多金属湾(DMNB)方法达到最高准确率和F测量率(分别为78.19%和77.90%)。此外,支持Victor机和Blagg menble的分类模型也取得了相似的结果。这些结果很有希望,因为机器学习模型仅基于错误检测数据集的正格特征。