In recent times, we have seen an increased use of text chat for communication on social networks and smartphones. This particularly involves the use of Hindi-English code-mixed text which contains words which are not recognized in English vocabulary. We have worked on detecting emotions in these mixed data and classify the sentences in human emotions which are angry, fear, happy or sad. We have used state of the art natural language processing models and compared their performance on the dataset comprising sentences in this mixed data. The dataset was collected and annotated from sources and then used to train the models.


翻译:最近,我们看到在社交网络和智能手机上越来越多地使用文本聊天来进行交流,这特别涉及使用印地语-英语编码混合文本,其中含有英文词汇中不承认的词,我们努力在这些混合数据中发现情绪,用愤怒、恐惧、快乐或悲伤的人类情感对判决进行分类,我们使用了最先进的自然语言处理模型,并比较了它们在这个混合数据中包含判决的数据集的性能,从来源收集数据集并附加说明,然后用于培训模型。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
Arxiv
2+阅读 · 2021年7月16日
Arxiv
20+阅读 · 2020年6月8日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
Top
微信扫码咨询专知VIP会员