Egocentric segmentation has attracted recent interest in the computer vision community due to their potential in Mixed Reality (MR) applications. While most previous works have been focused on segmenting egocentric human body parts (mainly hands), little attention has been given to egocentric objects. Due to the lack of datasets of pixel-wise annotations of egocentric objects, in this paper we contribute with a semantic-wise labeling of a subset of 2124 images from the RGB-D THU-READ Dataset. We also report benchmarking results using Thundernet, a real-time semantic segmentation network, that could allow future integration with end-to-end MR applications.
翻译:最近,由于在混合现实(MR)应用中的潜力,以偏心为主的分离在计算机视觉界引起了人们的兴趣。虽然以前的大部分工作都集中在以自我为中心的人体部分(主要是手)上,但很少注意以自我为中心的物体。由于缺乏像素一样的自我中心物体说明数据集,在本文件中,我们通过对RGB-D THU-READ数据集的2124个图像子集的语义标签作出贡献。我们还利用Sundernet(即实时语义分解网络)报告基准结果,这个网络可以在未来与端端至端的MR应用程序整合。