Transparency regarding the processing of personal data in online services is a necessary precondition for informed decisions on whether or not to share personal data. In this paper, we argue that privacy interfaces shall incorporate the context of display, personal preferences, and individual competences of data subjects following the principles of universal design and usable privacy. Doing so requires -- among others -- to consciously decouple the provision of transparency information from their ultimate presentation. To this end, we provide a general model of how transparency information can be provided from a data controller to data subjects, effectively leveraging machine-readable transparency information and facilitating versatile presentation interfaces. We contribute two actual implementations of said model: 1) a GDPR-aligned privacy dashboard and 2) a chatbot and virtual voice assistant enabled by conversational AI. We evaluate our model and implementations with a user study and find that these approaches provide effective and time-efficient transparency. Consequently, we illustrate how transparency can be enhanced using machine-readable transparency information and how data controllers can meet respective regulatory obligations.
翻译:在网上服务中,有关个人数据处理的透明度是是否共享个人数据做出知情决策的必要前提。在本文中,我们认为隐私界面应该包含显示环境、个人偏好和个体数据主体的能力等上下文,遵循通用设计和可用隐私的原则。为此,需要有意识地将透明信息的提供与其最终呈现分离。为此,我们提供了一个通用模型,说明了透明信息如何从数据控制器传递给数据主体,有效地利用机器可读的透明信息,实现多功能的展示界面。我们提供了两个实际实现模型的例子:1)符合GDPR的隐私仪表盘和2)由对话 AI 支持的聊天机器人和虚拟语音助手 。我们通过用户研究评估了我们的模型和实现,并发现这些方法提供了有效和节约时间的透明度。因此,我们说明了如何通过机器可读的透明信息提高透明度,以及数据控制器如何满足相应的监管义务。