By contrast with the prevailing works of low-light enhancement in natural images and videos, this study copes with the low-illumination quality degradation in anime scenery images to bridge the domain gap. For such an underexplored enhancement task, we first curate images from various sources and construct an unpaired anime scenery dataset with diverse environments and illumination conditions to address the data scarcity. To exploit the power of uncertainty information inherent with the diverse illumination conditions, we propose a Data Relativistic Uncertainty (DRU) framework, motivated by the idea from Relativistic GAN. By analogy with the wave-particle duality of light, our framework interpretably defines and quantifies the illumination uncertainty of dark/bright samples, which is leveraged to dynamically adjust the objective functions to recalibrate the model learning under data uncertainty. Extensive experiments demonstrate the effectiveness of DRU framework by training several versions of EnlightenGANs, yielding superior perceptual and aesthetic qualities beyond the state-of-the-art methods that are incapable of learning from data uncertainty perspective. We hope our framework can expose a novel paradigm of data-centric learning for potential visual and language domains. Code is available.
翻译:与当前自然图像和视频低光增强的主流研究相比,本研究针对动漫场景图像中的低光照质量退化问题,以弥合领域差距。针对这一尚未充分探索的增强任务,我们首先从多种来源收集图像,构建了一个包含多样化环境和光照条件的非配对动漫场景数据集,以解决数据稀缺问题。为了利用不同光照条件所固有的不确定性信息,我们受相对论生成对抗网络思想的启发,提出了一个数据相对不确定性框架。通过类比光的波粒二象性,我们的框架以可解释的方式定义并量化了暗/亮样本的光照不确定性,并利用该信息动态调整目标函数,以在数据不确定性下重新校准模型学习。大量实验通过训练多个版本的EnlightenGAN模型,证明了数据相对不确定性框架的有效性,其在感知和美学质量上均超越了无法从数据不确定性角度学习的现有最先进方法。我们希望我们的框架能为潜在的视觉和语言领域揭示一种以数据为中心学习的新范式。代码已开源。