This paper extends prior work on the connections between logics from finite model theory and propositional/algebraic proof systems. We show that if all non-isomorphic graphs in a given graph class can be distinguished in the logic Choiceless Polynomial Time with counting (CPT), then they can also be distinguished in the bounded-degree extended polynomial calculus (EPC), and the refutations have roughly the same size as the resource consumption of the CPT-sentence. This allows to transfer lower bounds for EPC to CPT and thus constitutes a new potential approach towards better understanding the limits of CPT. A super-polynomial EPC lower bound for a PTIME-instance of the graph isomorphism problem would separate CPT from PTIME and thus solve a major open question in finite model theory. Further, using our result, we provide a model theoretic proof for the separation of bounded-degree polynomial calculus and bounded-degree extended polynomial calculus.
翻译:本文扩展了有关有限模型理论和参数/数值校验系统之间逻辑联系的先前工作。 我们显示,如果某一图表类中所有非形态图形都可以在逻辑“无选择的多元时间与计算”(CPT)中加以区分,那么它们也可以在受约束度延伸多球积分(EPC)中加以区分,而反驳的大小与CPT-判决的资源消耗量大致相同。这样可以将ECP的较低界限转移到CPT, 从而成为更好地理解CPT界限的一种新的潜在方法。 超极现象EPC在图形的PTIME- International Internity(PTIME)中较低约束的超圆形EPC会将CPT与PTIME分开, 从而在有限模型理论中解决一个主要的开放问题。 此外,利用我们的结果,我们为将受约束度多球和受约束度扩展度扩展多球级的圆项的分离提供了模型性证据。