Emerged as a promising solution for future wireless communication systems, intelligent reflecting surface (IRS) is capable of reconfiguring the wireless propagation environment by adjusting the phase-shift of a large number of reflecting elements. To quantify the gain achieved by IRSs in the radio frequency (RF) powered Internet of Things (IoT) networks, in this work, we consider an IRS-assisted cellular-based RFpowered IoT network, where the cellular base stations (BSs) broadcast energy signal to IoT devices for energy harvesting (EH) in the charging stage, which is utilized to support the uplink (UL) transmissions in the subsequent UL stage. With tools from stochastic geometry, we first derive the distributions of the average signal power and interference power which are then used to obtain the energy coverage probability, UL coverage probability, overall coverage probability, spatial throughput and power efficiency, respectively. With the proposed analytical framework, we finally evaluate the effect on network performance of key system parameters, such as IRS density, IRS reflecting element number, charging stage ratio, etc. Compared with the conventional RF-powered IoT network, IRS passive beamforming brings the same level of enhancement in both energy coverage and UL coverage, leading to the unchanged optimal charging stage ratio when maximizing spatial throughput.


翻译:智能反射表面(IRS)是未来无线通信系统的一个很有希望的解决办法,它通过调整大量反射元素的相位转换,能够重新构筑无线传播环境。为了量化IRS在无线电频率(RF)驱动的Times(IoT)网络的无线电频率(IoT)电源互联网上所取得的收益,我们在此工作中认为,IRS辅助的基于手机的RFFFF动力 IoT网络,蜂窝基地台(BS)在充电阶段向IOT装置广播能源采集的能量信号,用于支持随后的UL阶段的上链(UL)传输。我们首先利用从随机测地几何几何测量工具获得平均信号功率和干扰力的分布,然后分别用于获得能源覆盖概率、ULS覆盖概率、总体覆盖概率、空间吞吐量和电力效率。我们最后评估了关键系统参数对网络性能的影响,例如IRS密度、IRS反映元素数、电台阶比率等关键系统参数对网络网络的网络性能效应的影响,同时将S-最优化的S-最优化的SBRF电压范围与最优化的IT网络与最优化的SBS-SBSBL网络进行对比。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月18日
Arxiv
0+阅读 · 2022年12月16日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员