Studying complex real-world phenomena often involves data from multiple views (e.g. sensor modalities or brain regions), each capturing different aspects of the underlying system. Within neuroscience, there is growing interest in large-scale simultaneous recordings across multiple brain regions. Understanding the relationship between views (e.g., the neural activity in each region recorded) can reveal fundamental insights into each view and the system as a whole. However, existing methods to characterize such relationships lack the expressivity required to capture nonlinear relationships, describe only shared sources of variance, or discard geometric information that is crucial to drawing insights from data. Here, we present SPLICE: a neural network-based method that infers disentangled, interpretable representations of private and shared latent variables from paired samples of high-dimensional views. Compared to competing methods, we demonstrate that SPLICE 1) disentangles shared and private representations more effectively, 2) yields more interpretable representations by preserving geometry, and 3) is more robust to incorrect a priori estimates of latent dimensionality. We propose our approach as a general-purpose method for finding succinct and interpretable descriptions of paired data sets in terms of disentangled shared and private latent variables.


翻译:研究复杂的现实世界现象通常涉及来自多个视图的数据(例如传感器模态或脑区),每个视图捕获底层系统的不同方面。在神经科学领域,对跨多个脑区的大规模同步记录日益关注。理解视图之间的关系(例如每个记录区域的神经活动)能够揭示每个视图及整个系统的基本洞见。然而,现有刻画此类关系的方法缺乏捕捉非线性关系所需的表达能力,仅描述方差的共享来源,或丢弃对从数据中获取洞见至关重要的几何信息。本文提出SPLICE:一种基于神经网络的方法,可从高维视图的配对样本中推断出解耦的、可解释的私有与共享潜变量表示。与竞争方法相比,我们证明SPLICE能够:1)更有效地解耦共享与私有表示;2)通过保持几何结构产生更具可解释性的表示;3)对潜变量维度的先验估计错误具有更强鲁棒性。我们提出该方法作为一种通用手段,用于通过解耦的共享与私有潜变量,为配对数据集寻找简洁且可解释的描述。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员