Super-resolution (SR) is a one-to-many task with multiple possible solutions. However, previous works were not concerned about this characteristic. For a one-to-many pipeline, the generator should be able to generate multiple estimates of the reconstruction, and not be penalized for generating similar and equally realistic images. To achieve this, we propose adding weighted pixel-wise noise after every Residual-in-Residual Dense Block (RRDB) to enable the generator to generate various images. We modify the strict content loss to not penalize the stochastic variation in reconstructed images as long as it has consistent content. Additionally, we observe that there are out-of-focus regions in the DIV2K, DIV8K datasets that provide unhelpful guidelines. We filter blurry regions in the training data using the method of [10]. Finally, we modify the discriminator to receive the low-resolution image as a reference image along with the target image to provide better feedback to the generator. Using our proposed methods, we were able to improve the performance of ESRGAN in x4 perceptual SR and achieve the state-of-the-art LPIPS score in x16 perceptual extreme SR.
翻译:超分辨率(SR)是具有多种可能解决方案的一对多项任务。 但是,先前的工程并不关注这一特点。 对于一到多个管道, 发电机应该能够生成对重建的多重估计, 而不是因为生成类似和同样现实的图像而受到惩罚。 为了实现这一目标, 我们提议在每个残余后再添加加权像素异噪音, 使生成器能够生成各种图像。 我们修改严格的内容损失, 只要其内容一致, 而不惩罚重建图像的随机变化。 此外, 我们观察到DIV2K, DIV8K数据集中有些重点以外的区域, 提供了无帮助的指导方针。 我们用 [10] 的方法过滤培训数据中的模糊区域。 最后, 我们修改歧视方, 接收低分辨率图像作为参考图像, 与目标图像一起为生成者提供更好的反馈。 我们使用我们提议的方法, 改进了ESRGAN在 X4 percepual SR 中的性能表现, 并实现了最高SR16 的状态分数 。