In this paper, we introduce distributed matrix multiplication (DMM)-friendly algebraic function fields for polynomial codes and Matdot codes, and present several constructions for such function fields through extensions of the rational function field. The primary challenge in extending polynomial codes and Matdot codes to algebraic function fields lies in constructing optimal decoding schemes. We establish optimal recovery thresholds for both polynomial algebraic geometry (AG) codes and Matdot AG codes for fixed matrix multiplication. Our proposed function fields support DMM with optimal recovery thresholds, while offering rational places that exceed the base finite field size in specific parameter regimes. Although these fields may not achieve optimal computational efficiency, our results provide practical improvements for matrix multiplication implementations. Explicit examples of applicable function fields are provided.
翻译:本文针对多项式码与Matdot码,引入了分布式矩阵乘法友好的代数函数域,并通过有理函数域的若干扩张构造了此类函数域。将多项式码与Matdot码推广至代数函数域的主要挑战在于构建最优解码方案。我们为固定矩阵乘法任务建立了多项式代数几何码与Matdot代数几何码的最优恢复阈值。所提出的函数域在支持具有最优恢复阈值的分布式矩阵乘法的同时,在特定参数范围内提供了超越基有限域大小的有理位点。尽管这些域在计算效率方面可能未达最优,但我们的结果为矩阵乘法实现提供了实用的改进方案。文中给出了适用的函数域的具体示例。