We consider (i) the problem of finding a (possibly mixed) Nash equilibrium in congestion games, and (ii) the problem of finding an (exponential precision) fixed point of the gradient descent dynamics of a smooth function $f:[0,1]^n \rightarrow \mathbb{R}$. We prove that these problems are equivalent. Our result holds for various explicit descriptions of $f$, ranging from (almost general) arithmetic circuits, to degree-$5$ polynomials. By a very recent result of [Fearnley, Goldberg, Hollender, Savani '20] this implies that these problems are PPAD$\cap$PLS-complete. As a corollary, we also obtain the following equivalence of complexity classes: CCLS = PPAD$\cap$PLS.
翻译:我们考虑了(一) 在拥堵游戏中找到(可能混合的)纳什平衡的问题,以及(二) 找到(极精密的)平滑函数的梯度下行动态固定点的问题(f):[0,1,n\rightrow \mathbb{R}$。我们证明这些问题是等效的。我们的结果是对美元的各种明确描述,从(几乎一般的)算术电路到程度至5美元多面值。根据[费恩利、戈德堡、霍伦德、萨瓦尼'20]最近的结果,这意味着这些问题是PPAD$\cap$PLS的完成。作为必然的结果,我们还取得了以下复杂类的等值:CCLS=PPAD$\cap$PLS。