Graph Convolutional Neural Networks (GCNs) have gained widespread popularity in various fields like personal healthcare and financial systems, due to their remarkable performance. Despite the growing demand for cloud-based GCN services, privacy concerns over sensitive graph data remain significant. Homomorphic Encryption (HE) facilitates Privacy-Preserving Machine Learning (PPML) by allowing computations to be performed on encrypted data. However, HE introduces substantial computational overhead, particularly for GCN operations that require rotations and multiplications in matrix products. The sparsity of GCNs offers significant performance potential, but their irregularity introduces additional operations that reduce practical gains. In this paper, we propose FicGCN, a HE-based framework specifically designed to harness the sparse characteristics of GCNs and strike a globally optimal balance between aggregation and combination operations. FicGCN employs a latency-aware packing scheme, a Sparse Intra-Ciphertext Aggregation (SpIntra-CA) method to minimize rotation overhead, and a region-based data reordering driven by local adjacency structure. We evaluated FicGCN on several popular datasets, and the results show that FicGCN achieved the best performance across all tested datasets, with up to a 4.10x improvement over the latest design.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员