The field of dynamical systems is being transformed by the mathematical tools and algorithms emerging from modern computing and data science. First-principles derivations and asymptotic reductions are giving way to data-driven approaches that formulate models in operator theoretic or probabilistic frameworks. Koopman spectral theory has emerged as a dominant perspective over the past decade, in which nonlinear dynamics are represented in terms of an infinite-dimensional linear operator acting on the space of all possible measurement functions of the system. This linear representation of nonlinear dynamics has tremendous potential to enable the prediction, estimation, and control of nonlinear systems with standard textbook methods developed for linear systems. However, obtaining finite-dimensional coordinate systems and embeddings in which the dynamics appear approximately linear remains a central open challenge. The success of Koopman analysis is due primarily to three key factors: 1) there exists rigorous theory connecting it to classical geometric approaches for dynamical systems, 2) the approach is formulated in terms of measurements, making it ideal for leveraging big-data and machine learning techniques, and 3) simple, yet powerful numerical algorithms, such as the dynamic mode decomposition (DMD), have been developed and extended to reduce Koopman theory to practice in real-world applications. In this review, we provide an overview of modern Koopman operator theory, describing recent theoretical and algorithmic developments and highlighting these methods with a diverse range of applications. We also discuss key advances and challenges in the rapidly growing field of machine learning that are likely to drive future developments and significantly transform the theoretical landscape of dynamical systems.


翻译:由现代计算和数据科学产生的数学工具和算法正在改变动态系统的领域。从最初的原则推导和无现成的减少正在让位给在操作者理论或概率框架中制定模型的由数据驱动的方法。Koopman光谱理论在过去十年中作为一个主导观点出现,其中非线性动态体现在一个无限的线性操作员在系统所有可能的测量功能的空间上。这种非线性机型动态的线性表述具有巨大的潜力,以便能够预测、估计和控制非线性系统,并采用为线性系统开发的标准教科书方法。然而,获得定线性协调系统和嵌入这些动态似乎大致线性框架的模型仍是一个核心开放挑战。Koopman成功分析主要由于三个关键因素:(1) 存在着将非线性动态与典型的地理测量方法联系起来的严格理论,2 这种方法是在测量方面制定的,它使得利用大数据和机器学习技术的理想,以及3) 简单而有力的数字算法,例如动态模式的解算法(DMD),我们开发并扩展了这一理论性理论的理论应用领域,并扩展了这种理论性理论学程性理论应用领域。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
43+阅读 · 2020年12月18日
专知会员服务
52+阅读 · 2020年9月7日
元自步学习
专知会员服务
33+阅读 · 2020年9月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Arxiv
0+阅读 · 2021年4月19日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
43+阅读 · 2020年12月18日
专知会员服务
52+阅读 · 2020年9月7日
元自步学习
专知会员服务
33+阅读 · 2020年9月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员