Reaching disabilities affect the quality of life. Functional Electrical Stimulation (FES) can restore lost motor functions. Yet, there remain challenges in controlling FES to induce desired movements. Neuromechanical models are valuable tools for developing FES control methods. However, focusing on the upper extremity areas, several existing models are either overly simplified or too computationally demanding for control purposes. Besides the model-related issues, finding a general method for governing the control rules for different tasks and subjects remains an engineering challenge. Here, we present our approach toward FES-based restoration of arm movements to address those fundamental issues in controlling FES. Firstly, we present our surface-FES-oriented neuromechanical models of human arms built using well-accepted, open-source software. The models are designed to capture significant dynamics in FES controls with minimal computational cost. Our models are customisable and can be used for testing different control methods. Secondly, we present the application of reinforcement learning (RL) as a general method for governing the control rules. In combination, our customisable models and RL-based control method open the possibility of delivering customised FES controls for different subjects and settings with minimal engineering intervention. We demonstrate our approach in planar and 3D settings.
翻译:手臂运动的缺陷会影响生活质量。功能电刺激(FES)可以恢复失去的运动功能。然而,控制FES以诱导所需的运动仍面临挑战。神经机械模型是开发FES控制方法的宝贵工具。然而,针对上肢区域,现有的几个模型要么过度简化,要么过于计算密集,不适合控制目的。除了与模型相关的问题外,找到一种通用的方法以实现不同任务和受试者的控制规则仍然是一个工程挑战。在这里,我们提出了我们的方法,用于解决FES控制方面的基本问题,实现手臂运动的恢复。首先,我们使用公认的开放源代码软件构建了面向表面FES的人类手臂神经机械模型。这些模型旨在以最小的计算成本捕捉FES控制中的重要动态特性。我们的模型是可定制的,可以用于测试不同的控制方法。其次,我们提出了强化学习(RL)作为控制规则的通用方法。结合使用,我们的可定制模型和基于RL的控制方法打开了在最小工程干预的情况下,在不同受试者和设置中提供定制FES控制的可能性。我们在平面和三维设置中演示了我们的方法。