We investigate the following many-to-one stable matching problem with diversity constraints (SMTI-Diverse): Given a set of students and a set of colleges which have preferences over each other, where the students have overlapping types, and the colleges each have a total capacity as well as quotas for individual types (the diversity constraints), is there a matching satisfying all diversity constraints such that no unmatched student-college pair has an incentive to deviate? SMTI-Diverse is known to be NP-hard. However, as opposed to the NP-membership claims in the literature [Aziz et al., AAMAS 2019; Huang, SODA 2010], we prove that it is beyond NP: it is complete for the complexity class $\Sigma^{\text{P}}_2$. In addition, we provide a comprehensive analysis of the problem's complexity from the viewpoint of natural restrictions to inputs and obtain new algorithms for the problem.


翻译:我们调查了与多样性制约(SMTI-Diversi)相匹配的多种稳定问题:鉴于一组学生和一组相互偏向于对方的学院,学生有重叠类型,而学院各具有全部能力和个别类型的配额(多样性制约),我们是否存在着一种匹配的、满足所有多样性制约,因此没有不相配的学生-合校对有偏离的动机?SMTI-Dversi是已知的NP-hard。然而,与文献[Aziz et al.,AMAS 2019;Huang,SODA 2010]中的NP成员主张相反,我们证明这超出了NP的范围:对于复杂类别来说,这是完全的。此外,我们从自然限制投入和为问题获取新的算法的角度,全面分析了问题的复杂性。

0
下载
关闭预览

相关内容

 【SIGGRAPH 2020】人像阴影处理,Portrait Shadow Manipulation
专知会员服务
29+阅读 · 2020年5月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员