Deep learning models are usually black boxes when deployed on machine learning platforms. Prior works have shown that the attributes ($e.g.$, the number of convolutional layers) of a target black-box neural network can be exposed through a sequence of queries. There is a crucial limitation: these works assume the dataset used for training the target model to be known beforehand and leverage this dataset for model attribute attack. However, it is difficult to access the training dataset of the target black-box model in reality. Therefore, whether the attributes of a target black-box model could be still revealed in this case is doubtful. In this paper, we investigate a new problem of Domain-agnostic Reverse Engineering the Attributes of a black-box target Model, called DREAM, without requiring the availability of the target model's training dataset, and put forward a general and principled framework by casting this problem as an out of distribution (OOD) generalization problem. In this way, we can learn a domain-agnostic model to inversely infer the attributes of a target black-box model with unknown training data. This makes our method one of the kinds that can gracefully apply to an arbitrary domain for model attribute reverse engineering with strong generalization ability. Extensive experimental studies are conducted and the results validate the superiority of our proposed method over the baselines.
翻译:暂无翻译