We study optimal resource allocation in restless multi-armed bandits (RMABs) under unknown and non-stationary dynamics. Solving RMABs optimally is PSPACE-hard even with full knowledge of model parameters, and while the Whittle index policy offers asymptotic optimality with low computational cost, it requires access to stationary transition kernels - an unrealistic assumption in many applications. To address this challenge, we propose a Sliding-Window Online Whittle (SW-Whittle) policy that remains computationally efficient while adapting to time-varying kernels. Our algorithm achieves a dynamic regret of $\tilde O(T^{2/3}\tilde V^{1/3}+T^{4/5})$ for large RMABs, where $T$ is the number of episodes and $\tilde V$ is the total variation distance between consecutive transition kernels. Importantly, we handle the challenging case where the variation budget is unknown in advance by combining a Bandit-over-Bandit framework with our sliding-window design. Window lengths are tuned online as a function of the estimated variation, while Whittle indices are computed via an upper-confidence-bound of the estimated transition kernels and a bilinear optimization routine. Numerical experiments demonstrate that our algorithm consistently outperforms baselines, achieving the lowest cumulative regret across a range of non-stationary environments.


翻译:我们研究了在未知且非平稳动态下不安定多臂老虎机(RMAB)中的最优资源分配问题。即使完全已知模型参数,最优求解RMAB也是PSPACE难的,而Whittle索引策略虽能以较低计算成本提供渐近最优性,却要求使用平稳转移核——这在许多实际应用中是不现实的假设。为应对这一挑战,我们提出了一种滑动窗口在线Whittle(SW-Whittle)策略,该策略在适应时变核的同时保持计算高效性。对于大规模RMAB,我们的算法实现了$\tilde O(T^{2/3}\tilde V^{1/3}+T^{4/5})$的动态遗憾界,其中$T$为回合数,$\tilde V$为连续转移核之间的总变差距离。重要的是,通过将Bandit-over-Bandit框架与我们的滑动窗口设计相结合,我们处理了变化预算事先未知的挑战性情况。窗口长度根据估计的变化量在线调整,而Whittle指数则通过估计转移核的上置信界及双线性优化程序计算。数值实验表明,我们的算法在多种非平稳环境中始终优于基线方法,实现了最低的累积遗憾。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员