Probabilistic Face Embeddings (PFE) can improve face recognition performance in unconstrained scenarios by integrating data uncertainty into the feature representation. However, existing PFE methods tend to be over-confident in estimating uncertainty and is too slow to apply to large-scale face matching. This paper proposes a regularized probabilistic face embedding method to improve the robustness and speed of PFE. Specifically, the mutual likelihood score (MLS) metric used in PFE is simplified to speedup the matching of face feature pairs. Then, an output-constraint loss is proposed to penalize the variance of the uncertainty output, which can regularize the output of the neural network. In addition, an identification preserving loss is proposed to improve the discriminative of the MLS metric, and a multi-layer feature fusion module is proposed to improve the neural network's uncertainty estimation ability. Comprehensive experiments show that the proposed method can achieve comparable or better results in 9 benchmarks than the state-of-the-art methods, and can improve the performance of risk-controlled face recognition. The code of our work is publicly available in GitHub (https://github.com/KaenChan/ProbFace).


翻译:将数据不确定性纳入特征表征,从而可以改善未受限制的情景中的表面识别性表现。然而,现有的PFE方法在估计不确定性时往往过于自信,而且过于缓慢,无法应用于大规模面相匹配。本文件提出一种常规化的概率表征嵌入方法,以提高PFE的稳健性和速度。具体地说,PFE所使用的相互概率评分(MLS)衡量标准可以简化,以加快对相配功能的匹配。然后,提议产出限制损失,以惩罚不确定性产出的差异,因为不确定性产出可以使神经网络的输出正规化。此外,还提议进行识别保存损失,以改进MLS指标的歧视性,并提议采用多层特性集成模块,以提高神经网络的不确定性估算能力。全面实验表明,拟议方法可以在9个基准中取得比目前最先进的方法相近或更好的结果,并可以改进风险控制面辨识的性能。我们在GitHan/PROHEB/FAC/FABB(http://gith.KAKA)中公开提供我们的工作代码。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
28+阅读 · 2021年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
已删除
将门创投
4+阅读 · 2019年11月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2020年3月17日
Arxiv
7+阅读 · 2019年6月20日
Arxiv
10+阅读 · 2018年4月19日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
28+阅读 · 2021年8月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
已删除
将门创投
4+阅读 · 2019年11月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员