This work presents a stochastic model predictive control (MPC) framework for linear systems subject to joint-in-time chance constraints under unknown disturbance distributions. Unlike existing stochastic MPC formulations that rely on parametric or Gaussian assumptions or require expensive offline computations, the proposed method leverages conformal prediction (CP) as a streamlined tool to construct finite-sample confidence regions for the system's stochastic error trajectories with minimal computational effort. These regions enable the relaxation of probabilistic constraints while providing formal guarantees. By employing an indirect feedback mechanism and a probabilistic set-based formulation, we prove recursive feasibility of the relaxed optimization problem and establish chance constraint satisfaction in closed-loop. Furthermore, we extend the approach to the more general output feedback setting with unknown measurement noise distributions. Given available noise samples, we establish satisfaction of the joint chance constraints and recursive feasibility via output measurements alone. Numerical examples demonstrate the effectiveness and advantages of the proposed method compared to existing approaches.
翻译:本文提出了一种针对未知扰动分布下联合时序机会约束线性系统的随机模型预测控制框架。与现有依赖参数化或高斯假设、或需昂贵离线计算的随机模型预测控制方法不同,所提方法利用保形预测作为高效工具,以最小计算成本构建系统随机误差轨迹的有限样本置信域。这些置信域能够在提供形式化保证的同时松弛概率约束。通过采用间接反馈机制和基于概率集的表述,我们证明了松弛优化问题的递归可行性,并在闭环中建立了机会约束的满足性。此外,我们将该方法推广至具有未知测量噪声分布的更一般输出反馈场景。基于可用的噪声样本,我们仅通过输出测量便实现了联合机会约束的满足性与递归可行性。数值算例验证了所提方法相较于现有方法的有效性和优势。