This study introduces a systematic framework to compare the efficacy of Large Language Models (LLMs) for fine-tuning across various cheminformatics tasks. Employing a uniform training methodology, we assessed three well-known models-RoBERTa, BART, and LLaMA-on their ability to predict molecular properties using the Simplified Molecular Input Line Entry System (SMILES) as a universal molecular representation format. Our comparative analysis involved pre-training 18 configurations of these models, with varying parameter sizes and dataset scales, followed by fine-tuning them on six benchmarking tasks from DeepChem. We maintained consistent training environments across models to ensure reliable comparisons. This approach allowed us to assess the influence of model type, size, and training dataset size on model performance. Specifically, we found that LLaMA-based models generally offered the lowest validation loss, suggesting their superior adaptability across tasks and scales. However, we observed that absolute validation loss is not a definitive indicator of model performance - contradicts previous research - at least for fine-tuning tasks: instead, model size plays a crucial role. Through rigorous replication and validation, involving multiple training and fine-tuning cycles, our study not only delineates the strengths and limitations of each model type but also provides a robust methodology for selecting the most suitable LLM for specific cheminformatics applications. This research underscores the importance of considering model architecture and dataset characteristics in deploying AI for molecular property prediction, paving the way for more informed and effective utilization of AI in drug discovery and related fields.
翻译:暂无翻译