Modern enterprise systems face escalating cyber threats that are increasingly dynamic, distributed, and multi-stage in nature. Traditional intrusion detection and response systems often rely on static rules and manual workflows, which limit their ability to respond with the speed and precision required in high-stakes environments. To address these challenges, we present the Intrusion Response System Digital Assistant (IRSDA), an agent-based framework designed to deliver autonomous and policy-compliant cyber defense. IRSDA combines Self-Adaptive Autonomic Computing Systems (SA-ACS) with the Knowledge guided Monitor, Analyze, Plan, and Execute (MAPE-K) loop to support real-time, partition-aware decision-making across enterprise infrastructure. IRSDA incorporates a knowledge-driven architecture that integrates contextual information with AI-based reasoning to support system-guided intrusion response. The framework leverages retrieval mechanisms and structured representations to inform decision-making while maintaining alignment with operational policies. We assess the system using a representative real-world microservices application, demonstrating its ability to automate containment, enforce compliance, and provide traceable outputs for security analyst interpretation. This work outlines a modular and agent-driven approach to cyber defense that emphasizes explainability, system-state awareness, and operational control in intrusion response.


翻译:现代企业系统面临着日益动态化、分布式和多阶段的网络安全威胁。传统的入侵检测与响应系统通常依赖于静态规则和人工工作流程,这限制了其在高风险环境中以所需速度和精度进行响应的能力。为应对这些挑战,我们提出了入侵响应系统数字助手(IRSDA),这是一种基于智能体的框架,旨在提供自主且符合策略的网络安全防御。IRSDA将自适应自主计算系统(SA-ACS)与知识引导的监测、分析、规划与执行(MAPE-K)循环相结合,以支持跨企业基础设施的实时、分区感知决策。IRSDA采用知识驱动的架构,将上下文信息与基于人工智能的推理相集成,以支持系统引导的入侵响应。该框架利用检索机制和结构化表示来辅助决策,同时保持与操作策略的一致性。我们通过一个具有代表性的真实微服务应用对系统进行评估,展示了其在自动化遏制、强制合规以及为安全分析师提供可追溯输出方面的能力。本研究概述了一种模块化、智能体驱动的网络安全防御方法,强调入侵响应中的可解释性、系统状态感知和操作控制。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员