Group segregation or cohesion can emerge from micro-level communication, and AI-assisted messaging may shape this process. Here, we report a preregistered online experiment (N = 557 across 60 sessions) in which participants discussed controversial political topics over multiple rounds and could freely change groups. Some participants received real-time message suggestions from a large language model (LLM), either personalized to their stance (individual assistance) or incorporating their group members' perspectives (relational assistance). We find that small variations in AI-mediated communication cascade into macro-level differences in group composition. Participants with individual assistance send more messages and show greater stance-based clustering, whereas those with relational assistance use more receptive language and form more heterogeneous ties. Hybrid expressive processes-jointly produced by humans and AI-can reshape collective organization. The patterns of structural division and cohesion depend on how AI incorporates users' interaction context.


翻译:群体隔离或凝聚力可以从微观层面的沟通中产生,而AI辅助的消息传递可能塑造这一过程。本文报告了一项预注册的在线实验(N = 557,跨越60个会话),参与者在多轮讨论中围绕争议性政治话题进行交流,并可自由更换小组。部分参与者接收来自大型语言模型(LLM)的实时消息建议,这些建议要么个性化适配其立场(个体辅助),要么整合了小组成员的观点(关系辅助)。我们发现,AI中介沟通中的微小变化会级联放大为群体组成的宏观差异。接受个体辅助的参与者发送更多消息并表现出更强的基于立场的聚类,而接受关系辅助的参与者则使用更具接纳性的语言并形成更多异质性联系。人类与AI共同产生的混合表达过程能够重塑集体组织。结构分化与凝聚的模式取决于AI如何整合用户的互动情境。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
UTC: 用于视觉对话的任务间对比学习的统一Transformer
专知会员服务
14+阅读 · 2022年5月4日
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
VIP会员
相关资讯
ICLR'21 | GNN联邦学习的新基准
图与推荐
12+阅读 · 2021年11月15日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员