The polynomial spline collocation method is proposed for solution of Volterra integral equations of the first kind with special piecewise continuous kernels. The Gauss-type quadrature formula is used to approximate integrals during the discretisation of the proposed projection method. The estimate of accuracy of approximate solution is obtained. Stochastic arithmetics is also used based on the Contr\^{o}le et Estimation Stochastique des Arrondis de Calculs (CESTAC) method and the Control of Accuracy and Debugging for Numerical Applications (CADNA) library. Applying this approach it is possible to find optimal parameters of the projective method. The numerical examples are included to illustrate the efficiency of proposed novel collocation method.
翻译:提议采用多元样样同流法,以解决第一种伏尔特拉整体方程式,并配有特殊的片段连续内核。在拟议的投影法分解期间,使用高斯类象形公式来估计整体部分。获得了近似溶液的准确性估计。还根据Contr ⁇ o}le et Estimatation Stochastique des Arrondis de Calculs (CESTAC) 方法和数字应用的精确度和调试控制库(CADNA),使用这个方法可以找到投影法的最佳参数。这些数字例子也用来说明拟议的新式同流法的效率。