A major concern when deploying LLMs in accuracy-critical domains such as sports reporting is that the generated text may not faithfully reflect the input data. We quantify how input structure affects hallucinations and other factual errors in LLM-generated summaries of NBA play-by-play data, across three formats: row-structured, JSON and unstructured. We manually annotated 3,312 factual errors across 180 game summaries produced by two models, Llama-3.1-70B and Qwen2.5-72B. Input structure has a strong effect: JSON input reduces error rates by 69% for Llama and 65% for Qwen compared to unstructured input, while row-structured input reduces errors by 54% for Llama and 51% for Qwen. A two-way repeated measures ANOVA shows that input structure accounts for over 80% of the variance in error rates, with Tukey HSD post hoc tests confirming statistically significant differences between all input formats.


翻译:在体育报道等准确性要求极高的领域部署大型语言模型(LLM)时,一个主要担忧是生成文本可能无法忠实反映输入数据。我们量化了输入结构如何影响LLM生成的NBA比赛解说摘要中的幻觉及其他事实性错误,并比较了三种输入格式:行结构、JSON和非结构化。我们手动标注了由Llama-3.1-70B和Qwen2.5-72B两个模型生成的180场比赛摘要中的3,312个事实错误。输入结构具有显著影响:与非结构化输入相比,JSON输入使Llama的错误率降低69%,Qwen降低65%;而行结构输入使Llama的错误率降低54%,Qwen降低51%。双向重复测量方差分析表明,输入结构解释了错误率方差的80%以上,Tukey HSD事后检验证实所有输入格式之间存在统计学显著差异。

0
下载
关闭预览

相关内容

JSON( Java Script Object Notation)是一种轻量级的资料交换语言,以文字为基础,且易于让人阅读。尽管 JSON 是在 JavaScript 的一個子集,但 JSON 是独立于语言的文本格式,並且采用了类似于 C 语言家族的一些习惯。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员