We prove the large deviation principle (LDP) for posterior distributions arising from curved exponential families in a parametric setting, allowing misspecification of the model. Moreover, motivated by the so called inverse Sanov Theorem, obtained in a nonparametric setting by Ganesh and O'Connell (1999 and 2000), we study the relationship between the rate function for the LDP studied in this paper, and the one for the LDP for the corresponding maximum likelihood estimators. In our setting, even in the non misspecified case, it is not true in general that the rate functions for posterior distributions and for maximum likelihood estimators are Kullback-Leibler divergences with exchanged arguments. Finally, the results of the paper has some further interest for the case of exponential families with a dual one (see Letac (2021+)).


翻译:我们证明了在参数环境中曲线指数型家庭后部分布的巨大偏差原则(LDP),允许对模型作错误的区分;此外,由于Ganesh和O'Connell在非参数环境下(1999年和2000年)获得的所谓的“Sanov Theorem”,我们研究了本文所研究的“LDP”费率函数与“LDP”对相应最大概率测算员的“LDP”比率函数之间的关系;在我们的设置中,即使在未说明错误的情况下,“后部分布”和“最高概率估计器”的费率函数与相互争论的“Kullback-Leibel”差异一般并不真实;最后,该文件的结果对具有双重作用的“指数式家庭”的情况(见Letac (2021+))。

0
下载
关闭预览

相关内容

专知会员服务
16+阅读 · 2021年5月21日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月28日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员