A class of network codes have been proposed in the literature where the symbols transmitted on network edges are binary vectors and the coding operation performed in network nodes consists of the application of (possibly several) permutations on each incoming vector and XOR-ing the results to obtain the outgoing vector. These network codes, which we will refer to as permute-and-add network codes, involve simpler operations and are known to provide lower complexity solutions than scalar linear codes. The complexity of these codes is determined by their degree which is the number of permutations applied on each incoming vector to compute an outgoing vector. Constructions of permute-and-add network codes for multicast networks are known. In this paper, we provide a new framework based on group algebras to design permute-and-add network codes for arbitrary (not necessarily multicast) networks. Our framework allows the use of any finite group of permutations (including circular shifts, proposed in prior work) and admits a trade-off between coding rate and the degree of the code. Further, our technique permits elegant recovery and generalizations of the key results on permute-and-add network codes known in the literature.
翻译:文献中建议了网络代码的类别,在网络边缘上传送的符号是二进矢量,而在网络节点上进行的编码操作包括每个进端矢量和 XOR 的结果应用(可能数个) 变换( 可能数) 和 XOR 的结果, 以获得导出矢量。 这些网络代码, 我们将称之为 permute- 和 add 网络代码, 涉及更简单的操作, 并已知提供比标度线性代码更低的复杂解决方案。 这些代码的复杂性由它们的程度决定, 即每个进口矢量对计算向外矢量应用的变换次数。 多播网络的 Permute- 和 添加网络代码的构建是已知的。 在本文中, 我们提供了一个基于群位代数的新框架, 用于任意( 不一定是多播种) 网络设计 permute- 和 添加的网络代码。 我们的框架允许使用任何有限的变换组合( 包括先前工作中提议的循环变换), 并承认编码率和度之间的平衡。 此外, 我们的技术允许在已知的网络代码中进行精准恢复和一般化。