Humour is a substantial element of human affect and cognition. Its automatic understanding can facilitate a more naturalistic human-device interaction and the humanisation of artificial intelligence. Current methods of humour detection are solely based on staged data making them inadequate for 'real-world' applications. We address this deficiency by introducing the novel Passau-Spontaneous Football Coach Humour (Passau-SFCH) dataset, comprising of about 11 hours of recordings. The Passau-SFCH dataset is annotated for the presence of humour and its dimensions (sentiment and direction) as proposed in Martin's Humor Style Questionnaire. We conduct a series of experiments, employing pretrained Transformers, convolutional neural networks, and expert-designed features. The performance of each modality (text, audio, video) for spontaneous humour recognition is analysed and their complementarity is investigated. Our findings suggest that for the automatic analysis of humour and its sentiment, facial expressions are most promising, while humour direction can be best modelled via text-based features. The results reveal considerable differences among various subjects, highlighting the individuality of humour usage and style. Further, we observe that a decision-level fusion yields the best recognition result. Finally, we make our code publicly available at https://www.github.com/EIHW/passau-sfch. The Passau-SFCH dataset is available upon request.
翻译:Passau-SFCH(Passau-SFCH)是人类影响和认知的一个实质性要素。它的自动理解可以促进更自然的人类-概念互动和人工智能人性化。目前的幽默检测方法完全基于阶段性数据,使其不足以用于“现实世界”应用。我们通过引入由大约11小时录音组成的新型Passau-Spontanous足球Shumour(Passau-SFCH)(Passau-SFCH)(Passau-SFCH)数据集来解决这一问题。Passau-SFCH(Passau-SFCH)数据集可以附加说明马丁的Humor风格问卷中提议的幽默及其层面(提示和方向)的存在。我们进行了一系列实验,使用预先训练的变异器、革命性神经网络和专家设计特征。我们分析并调查了每种模式(文字、音频、视频)的性能,以便自发性幽默感识别。我们的调查结果表明,面部表达最有希望,而幽默的方向则可以通过基于文字的特征进行最佳的模拟。结果显示各种主题之间的巨大差异,突出的个性和风格使用和风格。我们在公开的版本/风格上可以看到,最后,我们观察到了一种决定级的识别。我们对结果的识别。我们可以提供。