Distributed training can facilitate the processing of large medical image datasets, and improve the accuracy and efficiency of disease diagnosis while protecting patient privacy, which is crucial for achieving efficient medical image analysis and accelerating medical research progress. This paper presents an innovative approach to medical image classification, leveraging Federated Learning (FL) to address the dual challenges of data privacy and efficient disease diagnosis. Traditional Centralized Machine Learning models, despite their widespread use in medical imaging for tasks such as disease diagnosis, raise significant privacy concerns due to the sensitive nature of patient data. As an alternative, FL emerges as a promising solution by allowing the training of a collective global model across local clients without centralizing the data, thus preserving privacy. Focusing on the application of FL in Magnetic Resonance Imaging (MRI) brain tumor detection, this study demonstrates the effectiveness of the Federated Learning framework coupled with EfficientNet-B0 and the FedAvg algorithm in enhancing both privacy and diagnostic accuracy. Through a meticulous selection of preprocessing methods, algorithms, and hyperparameters, and a comparative analysis of various Convolutional Neural Network (CNN) architectures, the research uncovers optimal strategies for image classification. The experimental results reveal that EfficientNet-B0 outperforms other models like ResNet in handling data heterogeneity and achieving higher accuracy and lower loss, highlighting the potential of FL in overcoming the limitations of traditional models. The study underscores the significance of addressing data heterogeneity and proposes further research directions for broadening the applicability of FL in medical image analysis.
翻译:暂无翻译