Recent studies have found that pain in infancy has a significant impact on infant development, including psychological problems, possible brain injury, and pain sensitivity in adulthood. However, due to the lack of specialists and the fact that infants are unable to express verbally their experience of pain, it is difficult to assess infant pain. Most existing infant pain assessment systems directly apply adult methods to infants ignoring the differences between infant expressions and adult expressions. Meanwhile, as the study of facial action coding system continues to advance, the use of action units (AUs) opens up new possibilities for expression recognition and pain assessment. In this paper, a novel AuE-IPA method is proposed for assessing infant pain by leveraging different engagement levels of AUs. First, different engagement levels of AUs in infant pain are revealed, by analyzing the class activation map of an end-to-end pain assessment model. The intensities of top-engaged AUs are then used in a regression model for achieving automatic infant pain assessment. The model proposed is trained and experimented on YouTube Immunization dataset, YouTube Blood Test dataset, and iCOPEVid dataset. The experimental results show that our AuE-IPA method is more applicable to infants and possesses stronger generalization ability than end-to-end assessment model and the classic PSPI metric.
翻译:最近的研究发现,婴儿的疼痛对婴儿发育有重大影响,包括心理问题、可能脑损伤和成年后疼痛敏感性;然而,由于缺乏专家以及婴儿无法口头表达其痛苦经历的事实,很难评估婴儿的痛苦;大多数现有的婴儿疼痛评估系统直接将成人方法应用于婴儿,忽视婴儿表达方式和成人表达方式之间的差异;与此同时,随着面部行动编码系统研究的继续推进,使用行动单位(AUS)为表达识别和疼痛评估提供了新的可能性;在本文中,提出了新的AuE-IPA方法,通过利用AU的不同参与程度评估婴儿疼痛,评估婴儿疼痛。首先,通过分析一个端到端止疼痛评估模型的班级动画图,揭示了AUS在婴儿疼痛中的不同参与程度。随后,在一个回归模型中,将头部行动单位的强度用于实现婴儿痛苦自动评估。拟议的模型在YouTube免疫数据集、YouTube血液测试数据集和iCOPEVid数据集中进行了培训和实验。实验结果显示,我们的AUE-IPA方法比婴儿更能进行普通的模型和标准评估。