MLPerf Mobile is the first industry-standard open-source mobile benchmark developed by industry members and academic researchers to allow performance/accuracy evaluation of mobile devices with different AI chips and software stacks. The benchmark draws from the expertise of leading mobile-SoC vendors, ML-framework providers, and model producers. In this paper, we motivate the drive to demystify mobile-AI performance and present MLPerf Mobile's design considerations, architecture, and implementation. The benchmark comprises a suite of models that operate under standard models, data sets, quality metrics, and run rules. For the first iteration, we developed an app to provide an "out-of-the-box" inference-performance benchmark for computer vision and natural-language processing on mobile devices. MLPerf Mobile can serve as a framework for integrating future models, for customizing quality-target thresholds to evaluate system performance, for comparing software frameworks, and for assessing heterogeneous-hardware capabilities for machine learning, all fairly and faithfully with fully reproducible results.
翻译:MLPerf Move(MLPerf Moved)是行业成员和学术研究人员开发的第一个行业标准开放源码移动基准,目的是对使用不同AI芯片和软件堆的移动设备进行性能/准确性评估。基准来自主要移动 SoC供应商、ML框架供应商和模型生产商的专门知识。在本文中,我们推动消除移动-AI性能的神秘性,并提出移动MLPerf Move的设计考虑、结构和实施。基准包括一套模型,这些模型在标准模型、数据集、质量指标和运行规则下运作。在第一个版本中,我们开发了一个应用程序,为移动设备上的计算机视觉和自然语言处理提供“箱外”的推断性能基准。 MLPerf Moveive(MLPerf Move)可以作为一个框架,用于整合未来模型、定制质量目标阈值以评估系统性能、比较软件框架以及评估机器学习的多元软件能力,所有这些都是公平和忠实的,并完全可以重新获得的结果。