We consider the classical problem of estimating the covariance matrix of a subgaussian distribution from i.i.d. samples in the novel context of coarse quantization, i.e., instead of having full knowledge of the samples, they are quantized to one or two bits per entry. This problem occurs naturally in signal processing applications. We introduce new estimators in two different quantization scenarios and derive non-asymptotic estimation error bounds in terms of the operator norm. In the first scenario we consider a simple, scale-invariant one-bit quantizer and derive an estimation result for the correlation matrix of a centered Gaussian distribution. In the second scenario, we add random dithering to the quantizer. In this case we can accurately estimate the full covariance matrix of a general subgaussian distribution by collecting two bits per entry of each sample. In both scenarios, our bounds apply to masked covariance estimation. We demonstrate the near-optimality of our error bounds by deriving corresponding (minimax) lower bounds and using numerical simulations.
翻译:我们考虑了从i.d.d.的样本中估计粗微量化新背景下的亚高西语分布的共变矩阵的典型问题,即,这些样本不是完全了解样本,而是按每个条目的一或二位数进行量化。这个问题在信号处理应用程序中自然发生。我们在两种不同的量化假设中引入新的估算器,并从操作器规范中得出非零位估计误差界限。在第一个假设中,我们考虑一个简单、尺度化的单位数量化器,并对一个中央高斯分布的关联矩阵得出估计结果。在第二个假设中,我们向量化器添加随机抖动。在这个假设中,我们可以通过收集每个样本条目的两位数来准确估计一般亚高西语分布的全共变矩阵。在两种假设中,我们的界限都适用于掩码式的共变差估计。我们通过得出相应的(微缩缩缩图)下框和使用数字模拟来显示我们错误界限的近最佳程度。