We introduce GGLasso, a Python package for solving General Graphical Lasso problems. The Graphical Lasso scheme, introduced by (Friedman 2007) (see also (Yuan 2007; Banerjee 2008)), estimates a sparse inverse covariance matrix $\Theta$ from multivariate Gaussian data $\mathcal{X} \sim \mathcal{N}(\mu, \Sigma) \in \mathbb{R}^p$. Originally proposed by (Dempster 1972) under the name Covariance Selection, this estimation framework has been extended to include latent variables in (Chandrasekaran 2012). Recent extensions also include the joint estimation of multiple inverse covariance matrices, see, e.g., in (Danaher 2013; Tomasi 2018). The GGLasso package contains methods for solving a general problem formulation, including important special cases, such as, the single (latent variable) Graphical Lasso, the Group, and the Fused Graphical Lasso.
翻译:我们引入了GGLasso(GGLasso),这是一个用于解决通用图形拉索问题的Python套件。Friedman(2007年)(另见(Yuan 2007年;Banerjee 2008年)推出的图形拉索计划(GGLLasso),估计了从多种变式高斯数据($\mathcal{X}\sim\mathcal{N}(\mu,\Sigma)\in\mathbb{R ⁇ p$)中稀少的反常变数矩阵($Yan 2007年;Banerjee 2008年),估计了一个微小的反常变数矩阵($_BAR__BAR__BAR_GLasso) 。这一估算框架最初由(Dempster 1972年)在 " 差异选择 " 的名称下提出,已扩展为包括潜在变量(Chandrasekaran,2012年),最近的扩展还包括多种反常变数矩阵联合估算,例如(Danaher,2013年;Tomsi 2018)。Gasso包包含解决一般问题的方法,包括重要的特殊情况,例如(Lasso)的(So、Gical)。