Variational inference in Bayesian neural networks is usually performed using stochastic sampling which gives very high-variance gradients, and hence slow learning. Here, we show that it is possible to obtain a deterministic approximation of the ELBO for a Bayesian neural network by doing a Taylor-series expansion around the mean of the current variational distribution. The resulting approximate ELBO is the training-log-likelihood plus a squared gradient regulariser. In addition to learning the approximate posterior variance, we also consider a uniform-variance approximate posterior, inspired by the stationary distribution of SGD. The corresponding approximate ELBO has a simple form, as the log-likelihood plus a simple squared-gradient regulariser. We argue that this squared-gradient regularisation may at the root of the excellent empirical performance of SGD.


翻译:Bayesian 神经网络中的变化性推断通常使用随机抽样方法进行,这种抽样方法给出了非常高的挥发性梯度,因此学习速度缓慢。在这里,我们表明,通过围绕当前变异分布的平均值进行泰勒系列扩展,有可能为Bayesian神经网络获得ELBO的确定性近似值。由此得出的ELBO的近似值是培训类比值加上平方梯度整流器。除了了解近似后部差异外,我们还考虑一种由SGD的固定分布所启发的统一性差近似后部。相应的ELBO的近似值是一种简单的形式,作为日志类加上简单的平方位整流器。我们说,这种正方位整齐的正规化可能是SGD出色经验性表现的根。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月12日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员