There is a long history of approximation schemes for the problem of scheduling jobs on identical machines to minimize the makespan. Such a scheme grants a $(1+\epsilon)$-approximation solution for every $\epsilon > 0$, but the running time grows exponentially in $1/\epsilon$. For a long time, these schemes seemed like a purely theoretical concept. Even solving instances for moderate values of $\epsilon$ seemed completely illusional. In an effort to bridge theory and practice, we refine recent ILP techniques to develop the fastest known approximation scheme for this problem. An implementation of this algorithm reaches values of $\epsilon$ lower than $2/11\approx 18.2\%$ within a reasonable timespan. This is the approximation guarantee of MULTIFIT, which, to the best of our knowledge, has the best proven guarantee of any non-scheme algorithm.
翻译:长期以来,在相同机器上安排工作以最大限度地减少假币的近似方案方面,存在着长期的近似方案。这种方案为每1美元 > 0美元提供1 ⁇ - epsilon $- occolation 解决方案,但运行时间以1美元/ epslon 美元指数指数增长。在很长一段时间里,这些计划似乎是一个纯理论概念。即使解决中值 $\ epsilon 似乎完全是虚幻的事例。为了弥合理论和实践,我们改进了最近ILP 技术,以发展这一问题的已知最快近似方案。在合理的时间范围内,这一算法的实施达到了低于2/11\ aprox 18.2 $的值。这是ULUDIFIT的近似保障,据我们所知,这是任何非化学算法的最好保证。