We analyse prior risk factors for severe, critical or fatal courses of Covid-19 based on a retrospective cohort study using claims data of the AOK Bayern. As a methodological contribution, we avoid prior grouping and pre-selection of candidate risk factors and use fine-grained hierarchical information from medical classification systems for diagnoses, pharmaceuticals and procedures, using more than 33,000 covariates. Our approach is competitive to formal analyses using well-specified morbidity groups without needing prior subject-matter knowledge. The methodology and our published coefficients may be of interest for decision makers when prioritizing protective measures towards vulnerable subpopulations as well as for researchers aiming to adjust for confounders in studies of individual risk factors also for smaller cohorts.
翻译:我们利用AOK Bayern的索赔数据,对Covid-19严重、关键或致命课程的先前风险因素进行分析。作为一种方法上的贡献,我们避免事先对候选风险因素进行分组和预选,并使用33 000多个共变数使用医疗分类系统用于诊断、药品和程序的细细分级信息。我们的方法是竞争性的,即使用明确列出的发病群体进行正式分析,而不需要事先的主题知识。在优先考虑针对弱势亚群的保护措施时,决策者和研究人员可能感兴趣,因为研究人员在研究个别风险因素时,也会针对较小组群的混杂者作出调整。