Cognitive task classification using machine learning plays a central role in decoding brain states from neuroimaging data. By integrating machine learning with brain network analysis, complex connectivity patterns can be extracted from functional magnetic resonance imaging connectomes. This process transforms raw blood-oxygen-level-dependent (BOLD) signals into interpretable representations of cognitive processes. Graph neural networks (GNNs) further advance this paradigm by modeling brain regions as nodes and functional connections as edges, capturing topological dependencies and multi-scale interactions that are often missed by conventional approaches. Our proposed SpectralBrainGNN model, a spectral convolution framework based on graph Fourier transforms (GFT) computed via normalized Laplacian eigendecomposition. Experiments on the Human Connectome Project-Task (HCPTask) dataset demonstrate the effectiveness of the proposed approach, achieving a classification accuracy of 96.25\%. The implementation is publicly available at https://github.com/gnnplayground/SpectralBrainGNN to support reproducibility and future research.
翻译:利用机器学习进行认知任务分类在从神经影像数据解码大脑状态中起着核心作用。通过将机器学习与大脑网络分析相结合,可以从功能磁共振成像连接组中提取复杂的连接模式。这一过程将原始的血液氧合水平依赖信号转化为可解释的认知过程表征。图神经网络通过将大脑区域建模为节点、功能连接建模为边,进一步推进了这一范式,能够捕捉传统方法常常忽略的拓扑依赖性和多尺度交互作用。我们提出的SpectralBrainGNN模型是一个基于谱卷积的框架,其通过归一化拉普拉斯矩阵特征分解计算图傅里叶变换。在人类连接组计划-任务数据集上的实验证明了所提方法的有效性,分类准确率达到96.25%。相关实现已在https://github.com/gnnplayground/SpectralBrainGNN公开,以支持可重复性研究和未来探索。