A notion of quantum natural evolution strategies is introduced, which provides a geometric synthesis of a number of known quantum/classical algorithms for performing classical black-box optimization. Recent work of Gomes et al. [2019] on heuristic combinatorial optimization using neural quantum states is pedagogically reviewed in this context, emphasizing the connection with natural evolution strategies. The algorithmic framework is illustrated for approximate combinatorial optimization problems, and a systematic strategy is found for improving the approximation ratios. In particular it is found that natural evolution strategies can achieve approximation ratios competitive with widely used heuristic algorithms for Max-Cut, at the expense of increased computation time.
翻译:引入了量子自然进化战略的概念,它为进行古典黑盒优化提供一系列已知量子/古典算法的几何合成。 Gomes等人([2019] 最近关于使用神经量子状态进行超光速组合优化的工作在这方面从教学角度进行了审查,强调与自然进化战略的联系。算法框架用于说明近似组合优化问题,并找到改进近似比例的系统战略。 特别是,发现自然进化战略可以实现近似比率,与广泛使用的马克斯-考特超光速算法相比,以增加计算时间为代价。