User equipment (UE) positioning accuracy is of paramount importance in current and future communications standard. However, traditional methods tend to perform poorly in non line of sight (NLoS) scenarios. As a result, deep learning is a candidate to enhance the UE positioning accuracy in NLoS environments. In this paper, we study the efficiency of deep learning on the 3GPP indoor factory (InF) statistical channel. More specifically, we analyse the impacts of several key elements on the positioning accuracy: the type of radio data used, the number of base stations (BS), the size of the training dataset, and the generalization ability of a trained model.
翻译:用户设备(UE)定位精度在当前和未来的通信标准中非常重要。然而,传统的方法在非直视(NLoS)情况下表现往往不佳。因此,深度学习是提高NLoS环境中UE定位精度的一个选择。在本文中,我们研究了在3GPP室内工厂(InF)统计通道上使用深度学习的效率。具体而言,我们分析了几个关键因素对定位精度的影响:所使用的无线电数据类型、基站(BS)的数量、训练数据集的大小以及训练模型的泛化能力。