We present a novel technique for amortized posterior estimation using Normalizing Flows trained with likelihood-weighted importance sampling. This approach allows for the efficient inference of theoretical parameters in high-dimensional inverse problems without the need for posterior training samples. We implement the method on multi-modal benchmark tasks in 2D and 3D to check for the efficacy. A critical observation of our study is the impact of the topology of the base distributions on the modelled posteriors. We find that standard unimodal base distributions fail to capture disconnected support, resulting in spurious probability bridges between modes. We demonstrate that initializing the flow with a Gaussian Mixture Model that matches the cardinality of the target modes significantly improves reconstruction fidelity, as measured by some distance and divergence metrics.


翻译:我们提出了一种利用似然加权重要性采样训练的归一化流进行摊销式后验估计的新方法。该技术能够在无需后验训练样本的情况下,高效推断高维逆问题中的理论参数。我们在二维和三维多模态基准任务上验证了该方法的有效性。本研究的一个关键发现是基础分布拓扑结构对建模后验的影响。我们发现标准的单峰基础分布无法捕捉非连通支撑集,导致模态间出现虚假概率桥接。通过使用与目标模态基数匹配的高斯混合模型初始化流,我们证明该方法能显著提升重构保真度,这一结论通过若干距离与散度度量指标得到验证。

0
下载
关闭预览

相关内容

【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【CVPR2024】医学基础模型的低秩知识分解
专知会员服务
35+阅读 · 2024年4月29日
专知会员服务
38+阅读 · 2021年3月29日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A Survey of Large Language Models
Arxiv
495+阅读 · 2023年3月31日
Arxiv
82+阅读 · 2023年3月26日
VIP会员
相关VIP内容
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【CVPR2024】医学基础模型的低秩知识分解
专知会员服务
35+阅读 · 2024年4月29日
专知会员服务
38+阅读 · 2021年3月29日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
半监督多任务学习:Semisupervised Multitask Learning
我爱读PAMI
18+阅读 · 2018年4月29日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员